Abstract
Bustos and Yohai proposed a class of robust estimates for autoregressive moving‐average (ARMA) models based on residual autocovariances (RA estimates). In this paper an affine equivariant generalization of the RA estimates for vector ARMA processes is given. These estimates are asymptotically normal and, when the innovations have an elliptical distribution, their asymptotic covariance matrix differs only by a scalar factor from the covariance matrix corresponding to the maximum likelihood estimate. A Monte Carlo study confirms that the RA estimates are efficient under normal errors and robust when the sample contains outliers. A robust multivariate goodness‐of‐fit test based on the RA estimates is also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.