Abstract
Beta regression models are widely used for modeling continuous data limited to the unit interval, such as proportions, fractions, and rates. The inference for the parameters of beta regression models is commonly based on maximum likelihood estimation. However, it is known to be sensitive to discrepant observations. In some cases, one atypical data point can lead to severe bias and erroneous conclusions about the features of interest. In this work, we develop a robust estimation procedure for beta regression models based on the maximization of a reparameterized L\(_q\)-likelihood. The new estimator offers a trade-off between robustness and efficiency through a tuning constant. To select the optimal value of the tuning constant, we propose a data-driven method which ensures full efficiency in the absence of outliers. We also improve on an alternative robust estimator by applying our data-driven method to select its optimum tuning constant. Monte Carlo simulations suggest marked robustness of the two robust estimators with little loss of efficiency when the proposed selection scheme for the tuning constant is employed. Applications to three datasets are presented and discussed. As a by-product of the proposed methodology, residual diagnostic plots based on robust fits highlight outliers that would be masked under maximum likelihood estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.