Abstract

In this article, we study the robust estimation for the covariance matrix of stationary multi-variate time series. As a robust estimator, we propose to use a minimum density power divergence estimator (MDPDE) proposed by Basu et al. (1998). Particularly, the MDPDE is designed to perform properly when the time series is Gaussian. As a special case, we consider the robust estimator for the autocovariance function of univariate stationary time series. It is shown that the MDPDE is strongly consistent and asymptotically normal under regularity conditions. Simulation results are provided for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.