Abstract
Modelling the covariance structure of multivariate longitudinal data is more challenging than its univariate counterpart, owing to the complex correlated structure among multiple responses. Furthermore, there are little methods focusing on the robustness of estimating the corresponding correlation matrix. In this paper, we propose an alternative Cholesky block decomposition (ACBD) for the covariance matrix of multivariate longitudinal data. The new unconstrained parameterization is capable to automatically eliminate the positive definiteness constraint of the covariance matrix and robustly estimate the correlation matrix with respect to the model misspecifications of the nested prediction error covariance matrices. The entries of the new decomposition are modelled by regression models, and the maximum likelihood estimators of the regression parameters in joint mean–covariance models are computed by a quasi-Fisher iterative algorithm. The resulting estimators are shown to be consistent and asymptotically normal. Simulations and real data analysis illustrate that the new method performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.