Abstract
In this article, minimum average variance estimation (MAVE) based on local modal regression is proposed for partial linear single-index models, which can be robust to different error distributions or outliers. Asymptotic distributions of the proposed estimators are derived, which have the same convergence rate as the original MAVE based on least squares. A modal EM algorithm is provided to implement our robust estimation. Both simulation studies and a real data example are used to evaluate the finite sample performance of the proposed estimation procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.