Abstract

We propose a new approach for solving the filtering problem in linear systems based on incomplete measurements, where the characteristics of the dynamic noise are not known exactly, and measurements may contain anomalous non-Gaussian errors. The proposed algorithm is based on the idea of using the adaptive Kalman filter and the generalized least absolute deviations method jointly. With numerical modeling, we show that, compared to the classical optimal linear filtering method, our solution has lower sensitivity to short-term outliers in measurements and provides a quick adjustment of the parameters of the system dynamics. The proposed algorithm can be used to solve onboard navigation and tracking problems on aircrafts. To implement the method of least absolute deviations, we use an efficient L1-optimization algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.