Abstract

AbstractThis paper presents theoretical and experimental results of a newly developed automatic controller tuning algorithm called Robust Estimation for Automatic Controller Tuning (REACT) to tune a linear feedback controller to the unknown spectrum of disturbances present in a feedback loop. With model uncertainty and controller perturbations described in (dual) Youla parametrizations, the REACT algorithm allows recursive least squares based tuning of a feedback controller in the presence of model uncertainty to minimize the variance of control performance related signal. It is shown how stability of the feedback can be maintained during adaptive regulation, while simulation and experimental results on a mechanical test bed of an active suspension system illustrate the effectiveness of the algorithm for vibration isolation of periodic disturbances with unknown and varying frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call