Abstract

Single-stranded DNA (ssDNA) oligonucleotides are widely used in biological research, therapeutics, biotechnology, and nanomachines. Large-scale enzymatic production of ssDNA oligonucleotides forming noncanonical structures has been difficult. Here, we present a simple and robust method named "palindrome-nicking-dependent amplification" (PaNDA) for enzymatic production of a large amount of ssDNA oligonucleotides. It utilizes a strand-displacing DNA polymerase and a nicking enzyme together with input DNA and deoxynucleotide triphosphates at 55 °C. Scaling up of PaNDA is straightforward due to its isothermal nature. The ssDNA products can easily be isolated through anion-exchange chromatography under nondenaturing conditions. We demonstrate applications of PaNDA to 13C/15N-labeling of various DNA strands, including a 22-nt telomere repeat G-quadruplex, a 26-nt therapeutic aptamer, and a 33-nt DNAzyme. The 13C/15N-labeling by PaNDA greatly facilitates the characterization of noncanonical DNA by nuclear magnetic resonance (NMR) spectroscopy. For example, the behavior of therapeutic DNA aptamers in human serum can be investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call