Abstract

Single-stranded DNA (ssDNA) oligonucleotides are widely used in biological research, therapeutics, biotechnology, and nanomachines. Large-scale enzymatic production of ssDNA oligonucleotides forming noncanonical structures has been difficult. Here, we present a simple and robust method named "palindrome-nicking-dependent amplification" (PaNDA) for enzymatic production of a large amount of ssDNA oligonucleotides. It utilizes a strand-displacing DNA polymerase and a nicking enzyme together with input DNA and deoxynucleotide triphosphates at 55 °C. Scaling up of PaNDA is straightforward due to its isothermal nature. The ssDNA products can easily be isolated through anion-exchange chromatography under nondenaturing conditions. We demonstrate applications of PaNDA to 13C/15N-labeling of various DNA strands, including a 22-nt telomere repeat G-quadruplex, a 26-nt therapeutic aptamer, and a 33-nt DNAzyme. The 13C/15N-labeling by PaNDA greatly facilitates the characterization of noncanonical DNA by nuclear magnetic resonance (NMR) spectroscopy. For example, the behavior of therapeutic DNA aptamers in human serum can be investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.