Abstract

In the quest to mitigate carbon dioxide emissions, it becomes essential to address the existing atmospheric CO2. Effective and economical methodologies, particularly those without additional energy consumption, are crucial. Currently, a leading method is the direct capture of CO2 using ion exchange resins, which achieve the adsorption and desorption of carbon dioxide simply by using the humidity variations. This technology, though minimizing additional energy cost, still needs improvement in its efficiency in CO2 capture capacity and compared to other methods. In this work, we develop low-cost techniques to reduce the AmberLite™ IRA900 Cl (IRA-900) anion exchange resin to micro size, and observe significant performance enhancement on CO2 capture efficiency contingent on reducing the particle diameters. This performance disparity is attributed to the differential water adsorption capacities inherent in particles of diverse diameters. Our results reveal that smaller resin particles outperform their larger counterparts, exhibiting accelerated adsorption rates and expedited transitions from wet to dry states. Notably, these smaller particles display a quintupled enhancement in adsorption efficacy relative to non-treated particles and a marked increase in relative adsorption capacity. Upon treatment, IRA-900 demonstrates robust CO2 processing efficiency, achieving a peak adsorption rate of 1.28 g/mol·h and a maximum desorption rate of 1.18 g/mol·h. Also, the material is subjected to almost 100 cycles of testing, and even after 100 cycles, the resin particles maintain a capacity of 100%. Moreover, our material can be fully regenerated to 100% efficiency by simply immersing it in water. Simultaneously, storing it in water allows for the long-term maintenance of its performance without other treatment methods. A key observation is the resin’s sustained performance stability post extended exposure to humid conditions. These outcomes offer substantial practical implications, emphasizing the relevance of our study in practical environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.