Abstract

Non-uniform rational B-splines (NURBs) demonstrate properties that make them attractive as metamodels, or surrogate models, for engineering design purposes. Previous research has resulted in the development of algorithms capable of fitting NURBs-based metamodels to engineering design spaces, and optimizing these models. This article presents an approach to robust optimization that employs NURBs-based metamodels. This robust optimization technique exploits the unique structure of NURBs-based metamodels to derive a simple but effective robustness metric. An algorithm is demonstrated that uses this metric to weigh robustness against optimality, and visualizes the trade-offs between these metamodel properties. This approach is demonstrated with test problems of increasing dimensionality, including several practical design challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call