Abstract

When automatic speech recognition (ASR) and speaker verification (SV) are applied in adverse acoustic environments, endpoint detection and energy normalization can be crucial to the functioning of both systems. In low signal-to-noise ratio (SNR) and nonstationary environments, conventional approaches to endpoint detection and energy normalization often fail and ASR performances usually degrade dramatically. The purpose of this paper is to address the endpoint problem. For ASR, we propose a real-time approach. It uses an optimal filter plus a three-state transition diagram for endpoint detection. The filter is designed utilizing several criteria to ensure accuracy and robustness. It has almost invariant response at various background noise levels. The detected endpoints are then applied to energy normalization sequentially. Evaluation results show that the proposed algorithm significantly reduces the string error rates in low SNR situations. The reduction rates even exceed 50% in several evaluated databases. For SV, we propose a batch-mode approach. It uses the optimal filter plus a two-mixture energy model for endpoint detection. The experiments show that the batch-mode algorithm can detect endpoints as accurately as using HMM forced alignment while the proposed one has much less computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.