Abstract

We present a non-iterative and model-free algorithm for three-dimensional (3D) single emitter localization. Our algorithm decodes the axial position and the emitter width via the ratio of the first and second Fourier harmonic. The retrieved width information is further used for dynamic extraction of the proper region of interest to robustly eliminate the outer noisy background, thus improving the localization precision over existing non-iterative algorithms. Using simulated and experimental datasets, we demonstrate that our algorithm achieves localization precision approaching the state-of-the-art iterative fitting-based methods in all three dimensions at two orders of magnitude faster speed, applicable in various 3D single-molecule localization techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call