Abstract
This paper proposes a robust emergency preparedness planning (EPP) scheme to optimally pre-position diverse mobile emergency resources (MERs) in staging locations and perform proactive network reconfiguration for resilience enhancement of energy-transportation nexus (ETN) against extreme rainfalls. Based on rainfall-runoff simulation with hydrodynamic partial differential equations, a risk identification approach for flood-prone transportation modeling is developed for vehicle travel time estimation and MER routing optimization. To handle uncertainties in line outages and flooded roads incurred by extreme rainfalls, a tri-level robust EPP model is proposed to determine the optimal emergency preparedness plan immunized against the worst-case realization of uncertainties. Furthermore, a tailored solution method combining nested column-and-constraint generation algorithm with multiple linearization techniques is devised to cope with the proposed nonlinear robust EPP model. Comparative studies have validated the effectiveness of the proposed scheme for resilience enhancement of the ETN confronted with extreme rainfall disasters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.