Abstract

In this paper we propose a novel economic robust predictive controller for periodic operation. The proposed controller joins dynamic and economic trajectory planning and robust predictive controller for tracking in a single layer taking into account bounded disturbances, algebraic constraints and periodic operation. We study the closed-loop system properties of the proposed controller and provide a design procedure that guarantees that the perturbed closed-loop system converges asymptotically to the optimal economic reachable periodic trajectory, constraint satisfaction and recursive feasibility. The proposed controller has been applied to control a cluster of interconnected micro-grids. Each nano-grid is connected to an electric utility and has a renewable energy source, a cluster of batteries and a metal hydride based hydrogen storage system. The cluster must satisfy a periodic energy demand while maximizing the profit of the energy sold to the electric utility taking into account time varying prices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.