Abstract
In this paper, the authors analyze their graph-based approach for 2D and 3D object duplicate detection in still images. A graph model is used to represent the 3D spatial information of the object based on the features extracted from training images to avoid explicit and complex 3D object modeling. Therefore, improved performance can be achieved in comparison to existing methods in terms of both robustness and computational complexity. Different limitations of this approach are analyzed by evaluating performance with respect to the number of training images and calculation of optimal parameters in a number of applications. Furthermore, effectiveness of object duplicate detection algorithm is measured over different object classes. The authors’ method is shown to be robust in detecting the same objects even when images with objects are taken from different viewpoints or distances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia Data Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.