Abstract
Modelling of convex optimization in the face of data uncertainty often gives rise to families of parametric convex optimization problems. This motivates us to present, in this paper, a duality framework for a family of parametric convex optimization problems. By employing conjugate analysis, we present robust duality for the family of parametric problems by establishing strong duality between associated dual pair. We first show that robust duality holds whenever a constraint qualification holds. We then show that this constraint qualification is also necessary for robust duality in the sense that the constraint qualification holds if and only if robust duality holds for every linear perturbation of the objective function. As an application, we obtain a robust duality theorem for the best approximation problems with constraint data uncertainty under a strict feasibility condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.