Abstract
For the low-rank representation-based subspace clustering, the affinity matrix is block diagonal. In this paper, a novel robust discriminant low-rank representation (RDLRR) algorithm is proposed to enhance the block diagonal property to explore the multiple subspace structures of samples. In order to cluster samples into their corresponding subspace and remove outliers, the proposed RDLRR considers both the within-class and the between-class distance during seeking the lowest-rank representation of samples. RDLRR could well indicate the global structure of samples, when the labeling is available. We conduct experiments on several datasets, including the Extended Yale B, AR and Hopkins 155, to show that our approach outperforms all the other state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.