Abstract

In a multipath communication channel, the optimal receiver is matched to the maximum likelihood (ML) estimate of the multipath signal. In general, this leads to a computationally intensive multidimensional nonlinear optimization problem that is not feasible in most applications. We develop a detection algorithm that avoids finding the ML estimates of the channel parameters while still achieving good performance. Our approach is based on a geometric interpretation of the multipath detection problem. The ML estimate of the multipath signal is the orthogonal projection of the received signal on a suitable signal subspace S. We design a second subspace G, which is the representation subspace, that is close to S but whose orthogonal projection is easily computed. The closeness is measured by the gap metric. The subspace G is designed by using wavelet analysis tools coupled with a reshaping algorithm in the Zak transform domain. We show examples where our approach significantly outperforms the conventional correlator receiver (CR) and other alternative suboptimal detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call