Abstract

Timely detection and accurate description of extreme events, such as natural disasters and other crisis situations, are crucial for emergency management and mitigation. Extreme-event detection is challenging, since one has to rely upon reports from human observers appointed to specific geographical areas, or on an expensive and sophisticated infrastructure. In the case of earthquakes, geographically dense sensor networks are expensive to deploy and maintain. Therefore, only some regions—or even countries—are able to acquire useful information about the effects of earthquakes in their own territory. An inexpensive and viable alternative to this problem is to detect extreme real-world events through people's reactions in online social networks. In particular, Twitter has gained popularity within the scientific community for providing access to real-time “citizen sensor” activity. Nevertheless, the massive amount of messages in the Twitter stream, along with the noise it contains, underpin a number of difficulties when it comes to Twitter-based event detection. We contribute to address these challenges by proposing an online method for detecting unusual bursts in discrete-time signals extracted from Twitter. This method only requires a one-off semisupervised initialization and can be scaled to track multiple signals in a robust manner. We also show empirically how our proposed approach, which was envisioned for generic event detection, can be adapted for worldwide earthquake detection, where we compare the proposed model to the state of the art for earthquake tracking using social media. Experimental results validate our approach as a competitive alternative in terms of precision and recall to leading solutions, with the advantage of implementation simplicity and worldwide scalability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.