Abstract
Effective security surveillance is crucial in the railway sector to prevent security incidents, including vandalism, trespassing, and sabotage. This paper discusses the challenges of maintaining seamless surveillance over extensive railway infrastructure, considering both technological advances and the growing risks posed by terrorist attacks. Based on previous research, this paper discusses the limitations of current surveillance methods, particularly in managing information overload and false alarms that result from integrating multiple sensor technologies. To address these issues, we propose a new fusion model that utilises Probabilistic Occupancy Maps (POMs) and Bayesian fusion techniques. The fusion model is evaluated on a comprehensive dataset comprising three use cases with a total of eight real life critical scenarios. We show that, with this model, the detection accuracy can be increased while simultaneously reducing the false alarms in railway security surveillance systems. This way, our approach aims to enhance situational awareness and reduce false alarms, thereby improving the effectiveness of railway security measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.