Abstract
One of the most significant characteristics, which biosensors are supposed to satisfy, is robustness against abundant molecules coexisting with target biomolecules. In clinical diagnoses and biosensing, blood, plasma, and serum are used daily as samples. In this study, we conducted a series of experiments to examine the robustness of all-dielectric metasurface biosensors, which comprise pairs of a highly fluorescence-enhancing silicon nanopellet array and a transparent microfluidic chip. The metasurface biosensors were shown to have high performance in detecting various targets from nucleic acids to proteins, such as antigens and antibodies. The present results show almost four-order wide dynamic ranges from 0.16 ng/mL to 1 μg/mL for prostate-specific antigen (PSA) and from 2 pg/mL to 25 ng/mL for carcinoembryonic antigen (CEA). The ranges include clinical criteria for PSA, 4 ng/mL and CEA, 5 ng/mL. To date, a systematic demonstration of robustness has not been reported regarding the metasurface biosensors. In detecting cancer markers of PSA and CEA in human serums, we demonstrate that the metasurface biosensors are robust enough in a wide target concentrations, including the clinical diagnosis criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.