Abstract

In this paper, we investigate a multiuser distributed antenna system with simultaneous wireless information and power transmission under the assumption of imperfect channel state information (CSI). In this system, a distributed antenna port with multiple antennas supports a set of mobile stations who can decode information and harvest energy simultaneously via a power splitter. To design robust transmit beamforming vectors and the power splitting (PS) factors in the presence of CSI errors, we maximize the average worst-case signal-to-interference-plus- noise ratio (SINR) while achieving individual energy harvesting constraint for each mobile station. First, we develop an efficient algorithm to convert the max-min SINR problem to a set of "dual" min-max power balancing problems. Then, motivated by the penalty function method, an iterative algorithm based on semi-definite programming (SDP) is proposed to achieve a local optimal rank-one solution. Also, to reduce the computational complexity, we present another iterative scheme based on the Lagrangian method and the successive convex approximation (SCA) technique to yield a suboptimal solution. Simulation results are shown to validate the robustness and effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.