Abstract

Broad range of selectivity possesses serious limitation for the development of matrix metalloproteinase-2 (MMP-2) inhibitors for clinical purposes. To develop potent and selective MMP-2 inhibitors, initially multiple molecular modeling techniques were adopted for robust design. Predictive and validated regression models (2D and 3D QSAR and ligand-based pharmacophore mapping studies) were utilized for estimating the potency whereas classification models (Bayesian and recursive partitioning analyses) were used for determining the selectivity of MMP-2 inhibitors over MMP-9. Bayesian model fingerprints were used to design selective lead molecule which was modified using structure-based de novo technique. A series of designed molecules were prepared and screened initially for inhibitions of MMP-2 and MMP-9, respectively, as these are designed followed by other MMPs to observe the broader selectivity. The best active MMP-2 inhibitor had IC50 value of 24nM whereas the best selective inhibitor (IC50=51nM) showed at least 4 times selectivity to MMP-2 against all tested MMPs. Active derivatives were non-cytotoxic against human lung carcinoma cell line—A549. At non-cytotoxic concentrations, these inhibitors reduced intracellular MMP-2 expression up to 78% and also exhibited satisfactory anti-migration and anti-invasive properties against A549 cells. Some of these active compounds may be used as adjuvant therapeutic agents in lung cancer after detailed study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.