Abstract

Thin-walled shells like cylinders, cones and spheres are primary structures in launch-vehicle systems. When subjected to axial loading, bending or external pressure, these thin-walled shells are prone to buckling. The corresponding critical load heavily depends on deviations from the ideal shell shape. In general, these deviations are defined as geometric imperfections, and although imperfections exhibit comparatively low amplitudes, they can significantly reduce the critical load.Considering the influence of geometric imperfections adequately into the design process of thin-walled shells poses major challenges for structural design. The most common procedure to take into account the influence of imperfections is based on classical buckling loads obtained by a linear analysis which are then corrected by a knockdown factor. The knockdown factor represents a statistical lower-bound with respect to data obtained experimentally for different types of thin-walled shells.This article presents a versatile and simple numerical design approach for buckling of critical shell structures. The new design procedure is based on the reduced stiffness method and leads to significantly improved critical load estimations in comparison to lower-bounds obtained empirically. An analysis example is given which is based on the launch-vehicle stage adapter (LVSA) of NASAs Space Launch-system (SLS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.