Abstract

Emergency supply of blood in disasters is a crucial task for humanitarian aid. In this paper, we present a bi-objective robust optimization model for the design of blood supply chains that are resilient to disaster scenarios. The proposed two-stage stochastic optimization model aims at minimizing the time and cost of delivering blood to hospitals after the occurrence of a disaster, while considering possible disruptions in blood facilities and transportation routes. A Lagrangian relaxation-based algorithm is developed that is capable of solving large-scale instances of the model. We apply this framework to a real case study of blood banks in Jordan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.