Abstract

A new method for the genetic algorithm (GA) based design of broadband, high-performance electromagnetic absorbers is discussed. The method gives rise to novel absorber designs with a geometrical complexity greater than that of absorbers typically in use today. The finite element-boundary integral method is applied to efficiently analyze the scattering from complex geometries occupied by given lossy material, and genetic algorithms are adopted to optimize the geometry parameters to minimize the overall reflection coefficients. In addition, a method is proposed for accelerating the convergence of the GA. Numerical results for absorbers are presented for wide-angle incidence over a broad frequency range considering both polarizations, and demonstrate the new technique's power and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.