Abstract

The power oscillation damping (POD) controllers implemented in the two thyristor controlled series compensators of the Brazilian North-South (NS) interconnection, in the year 1999, were solely intended to damp the low-frequency NS oscillation mode. These controllers are still under operation and are derived from the modulus of the active power flow in the NS line that is phase-lagged at the frequency of the NS mode and may experience relatively large excursions generated by exogenous disturbances. This paper utilizes the same 1999 data to compare the performance of a proposed robust POD controller design with those of two conventional designs. A recent robust control synthesis algorithm used in this work is based on a nonsmooth optimization technique and has the capability to handle various controller structures, including reduced-order, and to deal with time-domain constraints on both controlled and measured outputs. Moreover, the nonsmooth design technique encompasses multiple operating conditions subject to various test signals, hence building a truly time-domain multi-scenarios approach. According to the results discussed hereafter, this is a key advantage in the industrial context of increasing demand for performance and robustness. The described results relate to a large-scale system model used in the feasibility studies for that interconnection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.