Abstract
AbstractWe consider the construction of robust sampling designs for the estimation of threshold probabilities in spatial studies. A threshold probability is a probability that the value of a stochastic process at a particular location exceeds a given threshold. We propose designs such that the estimation of threshold probabilities is robust to two possible model uncertainties: misspecified regression responses and covariance structures. To address these two uncertainties of this stochastic process, we average the mean squared error of the predicted values relative to the true values, over all possible covariance structures in a neighbourhood of the experimenter's nominal choice, and then maximize it over a neighbourhood of the fitted model. Finally, the maximum is minimized to obtain the robust designs. The Canadian Journal of Statistics 46: 470–481; 2018 © 2018 Statistical Society of Canada
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.