Abstract
We consider the reconstruction problem in compressed sensing in which the observations are recorded in a finite number of bits. They may thus contain quantization errors (from being rounded to the nearest representable value) and saturation errors (from being outside the range of representable values). Our formulation has an objective of weighted ℓ2–ℓ1 type, along with constraints that account explicitly for quantization and saturation errors, and is solved with an augmented Lagrangian method. We prove a consistency result for the recovered solution, stronger than those that have appeared to date in the literature, showing in particular that asymptotic consistency can be obtained without oversampling. We present extensive computational comparisons with formulations proposed previously, and variants thereof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.