Abstract
A robust delay-distribution-dependent stochastic stability analysis is conducted for a class of discrete-time stochastic delayed neural networks (DSNNs) with parameter uncertainties. The effects of both variation range and distribution probability of the time delay are taken into account in the proposed approach. The distribution probability of time delay is translated into parameter matrices of the transferred DSNNs model, in which the parameter uncertainties are norm-bounded, the stochastic disturbances are described in term of a Brownian motion, and the time-varying delay is characterized by introducing a Bernoulli stochastic variable. Some delay-distribution-dependent criteria for the DSNNs to be robustly globally exponentially stable in the mean square sense are achieved by Lyapunov method and introducing some new analysis techniques. Two numerical examples are provided to show the effectiveness and applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.