Abstract

Surveillance is a major stream of research in the field of Unmanned Aerial Vehicles (UAV), which focuses on the observation of a person, group of people, buildings, infrastructure, etc. With the integration of real time images and video processing approaches such as machine learning, deep learning, and computer vision, the UAV possesses several advantages such as enhanced safety, cheap, rapid response, and effective coverage facility. In this aspect, this study designs robust deep learning based real time object detection (RDL-RTOD) technique for UAV surveillance applications. The proposed RDL-RTOD technique encompasses a two-stage process namely object detection and objects classification. For detecting objects, YOLO-v2 with ResNet-152 technique is used and generates a bounding box for every object. In addition, the classification of detected objects takes place using optimal kernel extreme learning machine (OKELM). In addition, fruit fly optimization (FFO) algorithm is applied for tuning the weight parameter of the KELM model and thereby boosts the classification performance. A series of simulations were carried out on the benchmark dataset and the results are examined under various aspects. The experimental results highlighted the supremacy of the RDL-RTOD technique over the recent approaches in terms of several performance measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call