Abstract

This paper presents a decentralized solution to control a leader-follower formation of unicycle wheeled mobile robots allowing collision and obstacle avoidance. It is assumed that only positions and orientations of the robots can be measured and that each robot is influenced by an additive input disturbance. To guarantee the problem solution a supervisory control algorithm is designed and finite-time differentiators are used to estimate the leader velocity. The supervisor orchestrates three control algorithms responsible for the following, rendezvous and collision avoidance manoeuvres. All controls ensure a finite-time regulation for the robots orientation and a practically finite-time fulfilment of the required performance constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.