Abstract

In this paper, robust decentralized actuator fault detection and estimation is considered for a class of non-linear large-scale systems. A sliding mode observer is proposed together with an appropriate coordinate transformation to find the sliding mode dynamics. Then, based on the features of the observer, a decentralized fault estimation strategy is proposed using an equivalent output error injection, and a decentralized reconstruction scheme follows by further exploiting the structure of the uncertainty which is allowed to have non-linear bounds. The estimation and reconstruction signals only depend on the available measured information and thus the proposed strategy can work on-line. The theoretical results which have been obtained are applied to an automated highway system. Simulation shows the feasibility and effectiveness of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call