Abstract

Functionalized single-walled carbon nanotube (SWCNT)-based chemiresistors are reported for a highly robust and sensitive gas sensor to selectively detect cyclohexanone, a target analyte for explosive detection. The trifunctional selector has three important properties: it noncovalently functionalizes SWCNTs with cofacial π-π interactions, it binds to cyclohexanone via hydrogen bond (mechanistic studies were investigated), and it improves the overall robustness of SWCNT-based chemiresistors (e.g., humidity and heat). Our sensors produced reversible and reproducible responses in less than 30 s to 10 ppm of cyclohexanone and displayed an average theoretical limit of detection (LOD) of 5 ppm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.