Abstract

Fan et al. (Ann Stat 47(6):3009–3031, 2019) constructed a distributed principal component analysis (PCA) algorithm to reduce the communication cost between multiple servers significantly. However, their algorithm’s guarantee is only for sub-Gaussian data. Spurred by this deficiency, this paper enhances the effectiveness of their distributed PCA algorithm by utilizing robust covariance matrix estimators of Minsker (Ann Stat 46(6A):2871–2903, 2018) and Ke et al. (Stat Sci 34(3):454–471, 2019) to tame heavy-tailed data. The theoretical results demonstrate that when the sampling distribution is symmetric innovation with the bounded fourth moment or asymmetric with the finite 6th moment, the statistical error rate of the final estimator produced by the robust algorithm is similar to that of sub-Gaussian tails. Extensive numerical trials support the theoretical analysis and indicate that our algorithm is robust to heavy-tailed data and outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.