Abstract
In this paper, we study robust covariance estimation under the approximate factor model with observed factors. We propose a novel framework to first estimate the initial joint covariance matrix of the observed data and the factors, and then use it to recover the covariance matrix of the observed data. We prove that once the initial matrix estimator is good enough to maintain the element-wise optimal rate, the whole procedure will generate an estimated covariance with desired properties. For data with bounded fourth moments, we propose to use adaptive Huber loss minimization to give the initial joint covariance estimation. This approach is applicable to a much wider class of distributions, beyond sub-Gaussian and elliptical distributions. We also present an asymptotic result for adaptive Huber’s M-estimator with a diverging parameter. The conclusions are demonstrated by extensive simulations and real data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.