Abstract

This paper proposes a robust track-following controller design method for a dual-stage servo system in magnetic hard disk drives (HDDs). The method formulates the problem of minimizing track misregistration (TMR) in the presence of plant uncertainty and variation as a multiobjective optimization problem. Tracking error minimization is naturally formulated as an H/sub 2/ norm minimization problem, while the robust stability issue is addressed by some H/sub /spl infin// norm bounds. This mixed H/sub 2//H/sub /spl infin// control problem can then be formulated as a set of linear matrix inequalities (LMIs) and be efficiently solved through convex optimization algorithms. To enhance the system's tracking performance and stability robustness, the method explicitly takes attenuation of airflow-excited suspension vibration into consideration by an inner loop fast rate damping and compensation controller that utilizes the output of a strain gauge sensor on the suspension surface. Analysis and simulation show that a system designed by this method can achieve good tracking performance while still keeping stability robustness to plant variation and high-frequency spillover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.