Abstract

The control synthesis problem is investigated in this paper for a class of semi-active seat suspension systems with norm-bounded parameter uncertainties, time-varying input delay and actuator saturation. A vertical vibration model of human body is introduced in order to make the modeling of seat suspension systems more precise. By employing a delay-range-dependent Lyapunov function and exploring the property of the saturation nonlinearity, the existence conditions of the desired state-feedback controller are derived in terms of linear matrix inequalities (LMIs). The controller is derived by solving the LMIs and the corresponding closed-loop system is asymptotically stable with a guaranteed H ∞ performance. A design example is presented to show the usefulness and advantages of the developed theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.