Abstract
SummaryThis work proposes a control structure to be applied to robotic manipulators, which are articulated mechanical systems composed of links connected by joints. The proposed controller can be divided into two parts. The first one is a left inverse system, which is used to decouple the dynamic behavior of the joints. The second is a sliding mode controller, which is applied for each decoupled joint. It is important to note that the proposed structure, using only input/output measurements, reduces the control signal ‘chattering’, and it is robust to parametric uncertainties. Besides all the characteristics presented, the proposed structure simplifies the design of sliding mode controller to be applied in robotic manipulators. All these features are verified by simulations. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.