Abstract

Compared to control bandwidth, low-frequency uncertainties or disturbances like step signals can be well rejected by many methods having two-degree-of-freedom (2-DOF). Due to robustness constraint, technically more challenging is the rejection of medium frequencies, especially for bandwidth-limited systems. Here, the equivalent-input-disturbance (EID) approach is extended to deal with the main medium-frequency oscillation of a pantograph-catenary system. First, a general EID estimator is developed with a low-frequency estimator as a special case. Then, a fair comparison is conducted to clarify the essential differences between the conventional 1-DOF-based and the developed 2-DOF-based control systems. Furthermore, a robust stability condition is derived for the 2-DOF-based closed-loop control system. A design algorithm together with design guidelines is provided, where the frequency characteristics of the uncertainties are utilized in the parameter design. Finally, simulations are carried out to validate the developed 2-DOF-based method for the pantograph-catenary system in realistic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.