Abstract

In this article, a robust hybrid control method is presented for efficient path tracking control of a nonholonomic wheeled mobile robotic system under parametric and nonparametric variations. The present control law is a paradigm shift to control a wheeled mobile robot over a predefined trajectory by fusing the best features of the switching control logic as well as time-delayed control logic. The proposed hybrid control strategy aims at reducing the effort required for modeling the complex wheeled mobile robotic systems by approximating the unknown dynamics using input and feedback information of past time instances. Furthermore, the proposed methodology significantly reduces the approximation error arising from finite time-delay through the switching logic without any prior knowledge of the uncertainty bound. A new stability analysis for the time-delayed control is proposed which establishes an analytical relation between the controller performance and the approximation error. Performance of the proposed hybrid controller is tested with a real-life wheeled mobile robot and improved tracking performance is observed compared to conventional robust control strategies even with the incorporation of dynamic parametric uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.