Abstract

This article addresses the design of a robust tracking controller for a quadrotor Unmanned Aircraft Vehicle (UAV). The dynamics of the quadrotor contains uncertainties, nonlinearities and external disturbances that are not considered for the designing of the controller, which is designed using a combination of state-feedback linearization and high-order sliding modes. A state-feedback linearizing controller is applied for tracking of reference signals on the nominal model of the quadrotor, while the high-order sliding mode is applied to compensate for uncertainties and external disturbances in the dynamics. It is shown in numerical simulations that the proposed controller provides exact tracking in the absence of noise. Experimental results in a laboratory prototype illustrates the workability of the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call