Abstract

This article presents a detailed study of the robust control of a cable’s vibrations, with emphasis on considering a model of infinite dimension. Indeed, using a partial differential equation model of the vibrations of an inclined cable with sag, we are interested in studying the application of $\mathcal H_{\infty }$ -robust feedback control to this infinite dimensional system. The approach relies on Riccati equations to stabilize the system under measurement feedback when it is subjected to external disturbances. Henceforth, this article focuses on the construction of a standard linear infinite dimensional state space description of the cable under consideration before writing its approximation of finite dimension and studying the $\mathcal H_{\infty }$ feedback control of vibrations with partial observation of the state in both cases. The closed-loop system is numerically simulated to illustrate the effectiveness of the resulting control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.