Abstract

Musculoskeletal humanoids have various biomimetic advantages, of which redundant muscle arrangement is one of the most important features. This feature enables variable stiffness control and allows the robot to keep moving its joints even if one of the redundant muscles breaks, but this has been rarely explored. In this study, we construct a neural network that represents the relationship among sensors in the flexible and difficult-to-modelize body of the musculoskeletal humanoid, and by learning this neural network, accurate motions can be achieved. In order to take advantage of the redundancy of muscles, we discuss the use of this network for muscle rupture detection, online update of the intersensory relationship considering the muscle rupture, and body control and state estimation using the muscle rupture information. This study explains a method of constructing a musculoskeletal humanoid that continues to move and perform tasks robustly even when one muscle breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.