Abstract

The construction and modification of a Graphene Oxide (GO) membrane, incorporating polyvinyl alcohol (PVA) cross-linked with maleic acid (MA) and supported by a nylon membrane, have been successfully completed. Systematic variations in PVA and MA concentrations were conducted to achieve membranes with favorable characteristics, stability, and excellent desalination performance. Optimization studies utilizing the Central Composite Design (CCD) revealed that the most optimal desalination results were obtained with 10 mL of PVA (0.1 mg mL−1) and 0.9 M of MA (GO-MA0.9-PVA10/Nylon membrane). Experimental findings demonstrated that the inclusion of PVA and MA resulted in an increased interlayer distance of GO and enhanced membrane stability. The addition of PVA increases GO membrane hydrophilicity, while the addition of MA reduces membrane hydrophilicity. The GO-MA0.9-PVA10/Nylon membrane exhibited the highest desalination performance, boasting a rejection value exceeding >99.9% and a permeance of 18.76 kg m−2.h−1 under 1% NaCl feed at a temperature of 50 °C. This membrane demonstrated consistent desalination performance stability over an extended period of up to 70 h. Moreover, it exhibited durability through 8 cycles of 24-h usage with washing treatment. In conclusion, the GO-MA0.9-PVA10/Nylon membrane is strongly recommended for practical applications, outperforming other membrane options based on the comprehensive evaluation of its stability and desalination efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call