Abstract
In this paper, a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph. It is of two-degree-of-freedom nature. Specifically, a robust distributed controller is designed for consensus tracking, while a local disturbance estimator is designed for each agent without requiring the input channel information of disturbances. The condition for asymptotic disturbance rejection is derived. Moreover, even when the disturbance model is not exactly known, the developed method also provides good disturbance-rejection performance. Then, a robust stabilization condition with less conservativeness is derived for the whole multi-agent system. Further, a design algorithm is given. Finally, comparisons with the conventional one-degree-of-freedom-based distributed disturbance-rejection method for mismatched disturbances and the distributed extended-state observer for matched disturbances validate the developed method. Manuscript received May 13, 2022; accepted June 12, 2022. This work was supported by the National Natural Science Foundation of China (62003010, 61873006, 61673053), the Beijing Postdoctoral Research Foundation (Q6041001202001), the Postdoctoral Research Foundation of Chaoyang District (Q1041001202101), and the National Key Research and Development Project (2018YFC1602704, 2018YFB1702704). Recommended by Associate Editor Xiaohua Ge. (Corresponding author: Pan Yu.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.