Abstract

Consensus of multiagent systems (MASs) is an intriguing topic in recent years due to its widely used application in robotics, biology, computer, and social science. In the real world, the evolution of MAS is inevitably involved in dynamical environments and the recent development of MAS calls for novel tools for the analysis of MAS with dynamic topology. In addition, the interactions between agents are generally nonlinear and environmental noises are ubiquitous in the communication channels between agents. However, the existing investigation on MAS places little attention on nonlinear models and the inner relationship between external disturbance and consensus is still unclear. Facing these problems, this paper considers an MAS in which the interactions between agents are nonlinear and the communication between agents are infected by environmental noises. By using a novel method of nonsmooth Lyapunov candidate, it has been demonstrated that such an MAS can realize robust consensus under the conditions of jointly (sequentially) connected topology and bounded noises. Finally, simulation results validate the effectiveness of these criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.