Abstract

A distributed robust consensus of multiple autonomous underactuated surface vessels (AUSV) is studied in the presence of unknown environmental disturbances. The vehicles have 3 degrees of freedom and two actuators. Since the actuated and unactuated states of the vehicles are strongly coupled, first their kinematics and dynamics are transformed to a cascade non-linear system. Then, based on the properties of non-linear cascade systems, a state-based switching controller is proposed which guarantees the robust consensus of AUSVs. To illustrate the performance of the proposed consensus approach, simulation results are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.