Abstract

This study outlines the necessary and sufficient criteria for swarm stability asymptotically, meaning consensus in a class of fractional-order multi-agent systems (FOMAS) with interval uncertainties for both fractional orders 0 < α < 1 and 1 < α < 2. The constraints are determined by the graph topology, agent dynamics, and neighbor interactions. It is demonstrated that the fractional-order interval multi-agent system achieves consensus if and only if there are some Hermitian matrices that satisfy a particular kind of complex Lyapunov inequality for all of the system vertex matrices. This is done by using the existence condition of the Hermitian matrices in a Lyapunov inequality. To do this, at first it is shown under which conditions a multi-agent system with unstable agents can still achieve consensus. Then, using a lemma and a theory, the Lyapunov inequality regarding the negativity of the maximum eigenvalue of an augmented matrix of a FOMAS is used to find some Hermitian matrices by checking only a limited number of system vertex matrices. As a result, the necessary and sufficient conditions to reach consensus in a FOMAS in the presence of internal uncertainties are obtained according to the Lyapunov inequalities. Using the main theory of the current paper, instead of countless matrices, only a limited number of vertex matrices need to be used in Lyapunov inequalities to find some Hermitian matrices. As a confirmation of the notion, some instances from numerical simulation are also provided at the end of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call