Abstract

A confidence distribution is a distribution for a parameter of interest based on a parametric statistical model. As such, it serves the same purpose for frequentist statisticians as a posterior distribution for Bayesians, since it allows to reach point estimates, to assess their precision, to set up tests along with measures of evidence, to derive confidence intervals, comparing the parameter of interest with other parameters from other studies, etc. A general recipe for deriving confidence distributions is based on classical pivotal quantities and their exact or approximate distributions. However, in the presence of model misspecifications or outlying values in the observed data, classical pivotal quantities, and thus confidence distributions, may be inaccurate. The aim of this paper is to discuss the derivation and application of robust confidence distributions. In particular, we discuss a general approach based on the Tsallis scoring rule in order to compute a robust confidence distribution. Examples and simulation results are discussed for some problems often encountered in practice, such as the two-sample heteroschedastic comparison, the receiver operating characteristic curves and regression models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.